Performance Metrics for Power Converter Stewardship

A Key Element of an Effective Maintenance Strategy

Craig Burkhart

RF Accelerator Research & Engineering Division

September 25, 2014

Value of Performance Metrics to POCPA Stewardship

"Why does power conversion support cost so much?"

- What service are you providing, "fire department"?
- To provide efficient service, we must be proactive, not reactive
- Effective performance metrics provide quantitative justification for proactive elements of stewardship efforts
- Tool to manage customer expectations

As Engineers/Scientists we are "data driven"

- "How can you manage what you don't measure?"
- Effective performance metrics provide time-resolved measure of effectiveness of elements of stewardship program

General Characteristics of Effective Performance Metrics, aka Key Performance Indicators (KPIs)

SLAC

Based on data, which should be relatively simple to obtain

- Look to standardized data sets; OCFO financial reports, Accelerator Operations machine availability reports, ...
- This data is important to the Laboratory, not just power conversion
 Measure a controllable characteristic of your stewardship effort
 Have a standard or reference value
 - May be relative; system repair in FY14 cost \$0.43M
 - Or absolute; system availability in FY14 was 99.37%

Are SMART (Specific, Measurable, Achievable, Relevant to the organization, and Time-based)

"Obvious" Stewardship Metrics

SLAC

System availability

- Requires consistent and reasonable assignment of down time
 Stewardship costs
 - Lab business models are not designed to provide an absolute assessment

System performance

- Difficult to define a single SMART metric that accurately indicates performance, even for simple systems
- Typically an array of metrics is employed
- What is important to your customer?

Availability Metric

SLAC

Availability is a key metric for User Facilities

- "Operations" usually assigns goals and tracks system availability
- System definitions must be meaningful to stewardship

"Math of availability" provides stewardship focus

- A = MTTF/MTBR
- MTTF = MTBR MTTR
- MTTF: mean time to failure
- MTBF: mean time between failures
- MTTR: mean time to repair

Limitations of availability metric

- Poor maintenance practices only identified after the fact
- "Excessive" availability → excessive maintenance costs (DOE comment,
 "reducing availability from 95% to 85% reduces maintenance costs by 30%")
- "Good" availability metric is necessary, but not logically sufficient, to demonstrate effective stewardship

Cost Metric: Reference Value? (Trend Up or Trend Down, but is it Good?)

SLAC

Hourly rate – dominated by Lab cost model

- Management
- Infrastructure
- Regional wage factors

- Linac versus synchrotron
- NSLS-I versus NSLS-II

Can be applied locally with fidelity

Reference value can be established in collaboration with customer

Alternate Cost Metric: Return On Investment (ROI)

SLAC

Concept

 The cost of system improvement (investment) is offset/ reduced by a resultant reduction in recurring stewardship costs (return)

Advantages

Investment and return share same cost reference value
 Limitations

 Only applicable to "improvements" (includes preventative maintenance)

Mission Readiness: ROI-Based Infrastructure Upgrade SLAC

Challenge

- Much of SLAC's core mission employs half-century old accelerator infrastructure
- Significant portions of that infrastructure must be replaced (it will fail or fail to meet evolving requirements) to achieve longterm mission objectives
- What is the most cost-effective strategy to guide infrastructure investment?

Mission Readiness (MR) for LCLS based on a 2-element ROI strategy

- Repair and maintenance costs (ROI-M)
- Risk-based program impact (down time) costs (ROI-D)

Mission Readiness: The Business Model

SLAC

- System reliability and cost
 maintenance costs follow a "bathtub curve"
- Investment can "reset" the curve
- Time-integrated costs over "investment and a reset curve" are lower than continuing along "original curve"
- There is an optimal time for investment
- 20 years is a typical system
 lifetime to amortize investment

SLAC Mission Readiness List (excerpt) with ROI Elements SLAC

Before Maint	Maint	After Maint		
20 Year	Cost after	20 Year	Replace	
Cost	Replacemt	Cost	Cost	

	ROI-M	ROI-M	ROI-D	
	%	(M\$)	%	
7				

							Acceler	ator Dire	ectora	te Mi	sion	Rear	dines	s Imp	rovem	ent List	:											
Rev		Oct-15-2013															Maint (1yr)	Maint 10yr)	Before Maint	Maint	After Maint							
									Num	Schd-			Level	Likely-	Overall	Risk	Cost before	Cost lefore	20 Year	Cost after	20 Year	Replace	_		20yr		Year	Beam
			Accelerator			Problem		Person	ber	Prog	Cost	5&H	Tech	hood	Risk	Matrix	Replacemt	Replaceme	Cost	Replacemt	Cost	Co	KOI-M	ROI-M	ROI-D	RQI-D	for	Perf.
# MI	3	Program	or Facility	Sub-System	Component at risk	(identified)	Group	input	units	Risk	Risk	isk	Risk	Risk	Exposur	e Level	M\$/yr)	(M\$/yr)	(M\$)	(****/, *)	()	(N S)	%	(M\$)	%	(1)(\$)	Upgrd	Impmt
28 MR02	0 LCLS		Linac BSY	B136 Cable Systems	Cable Trays	To MCC Corroded	CTL	Carrone	1	4	3	2	4	2	8	М	0.100	0.300	6.0	0.0010	0.03	1.35	342%	4.6	211%	2.9	2014	1.0
29 MR01	9 LCLS		Linac BSY	B136 Cable Systems	Cable Trays	Underbridge Corro	CTL	Carrone	1	4	3	3	4	2	8	М	0.100	0.300	6.0	0.0010	0.03	0.18	3218%	5.8	NA	NA	2014	1.0
30 MR11	3 LCLS		Linac BSY	PPS	E/O devices, cable plant, access	End of life	CTL	Carrone	1	3	2	1	3	2	6	М	0.200	0.400	8.0	0.1000	2.73	2.18	142%	3.1	-39%	-0.9	2014	1.0
31 MR05	2 LCLS		Linac BSY	Legacy Elect Sys S21-30	Legacy Electrical Equipment	EEIP non-compliar	MFD	Atkinson	500	1	3	2	3	2	6	М	0.100	0.300	6.0	0.0500	1.36	0.52	792%	4.1	-46%	-0.2	2015	1.0
32 MR05	8 LCLS		Linac BSY	Vacuum system	B.L. CC Gauge Gate Valve	Obsolete	MFD	Atkinson	22	2	3	1	3	3	9	н	0.100	0.300	6.0	0.0200	0.55	1.07	410%	4.4	386%	4.1	2015	1.0
33 MR05	9 LCLS		Linac BSY	Vacuum system	B.L. Fast Valve	Obsolete	MFD	Atkinson	5	3	3	1	3	2	6	М	0.010	0.030	0.6	0.0010	0.03	1.04	-45%	-0.5	42%	0.4	2014	1.0
34 MR05	7 LCLS		Linac BSY	Vacuum system	Pump Stations	Obsolete	MFD	Atkinson	4	3	3	1	3	3	9	М	0.010	0.030	0.6	0.0010	0.03	4.08	-86%	-3.5	263%	10.7	2015	1.0
35 MR15	5 LCLS		Linac S21-30	Legacy Electrical Sys S2	Legacy Electrical Equipment	EEIP non-compliar	AD Mgm	Seeman	3085	1	4	2	4	1	4	L	0.330	0.660	13.2	0.0400	1.09	3.20	278%	8.9	-97%	-3.1	2016	1.0
36 MR02	3 LCLS		Linac S21-30	Controls Upgrade S21-	3 CAMAC	OB+Spares	CTL	Carrone	350	3	3	1	3	3	9	М	0.800	1.600	32.0	0.4000	10.91	6.93	204%	14.2	114%	7.9	2018	1.0
37 MR11	6 LCLS		Linac S21-30	LLRF S21-30	LLRF, Main Drive Ln, RF coupler	End of life	CTL	Carrone	18	3	3	1	3	2	6	М	0.300	0.600	12.0	0.2000	5.45	5.75	14%	0.8	-74%	-4.3	2019	1.0
38 MR02	8 LCLS		Linac \$21-30	PPS S21-30	Rlys, Interlks, EO, lights	OB,Fail unsafe	CTL	Carrone	5	3	2	1	3	2	6	М	0.200	0.600	12.0	0.1500	4.09	1.93	310%	6.0	-31%	-0.6	2018	1.0
39 MR00	4 LCLS		Linac S21-30	Tunnel S21-30	Vertical penetrations	Corrosion	FAC	Seeman	177	1	3	2	3	2	6	M	0.040	0.100	2.0	0.0200	0.55	1.53	-5%	-0.1	-82%	-1.3	2017	1.0
40 MR02	9 LCLS		Linac S21-30	ACS - LCW S21-30	Accelerator Structure	Corrosion	MECH	Seeman	320	3	3	1	3	2	6	М	0.100	0.400	8.0	0.0200	0.55	2.11	253%	5.3	-30%	-0.6	2022	1.0
41 MR07	4 LCLS		Linac S21-30	Magnet S21-30	Quad Magnets	Unreliable	MFD	Atkinson	85	2	2	1	2	2	4	M	0.060	0.120	2.4	0.0100	0.27	1.50	42%	0.6	-75%	-1.1	2016	1.0
42 MR06	0 LCLS		Linac S21-30	Vacuum system	Mech Blwr Pmp,Light Pipe	Aging V pump, lea	MFD	Atkinson	1	1	2	1	2	2	4	L	0.020	0.050	1.0	0.0100	0.27	0.69	5%	0.0	-81%	-0.6	2015	1.0
43 MR06	6 LCLS		Linac S21-30	Vacuum system S21-30	CC Gauge,Manifold,Gate V	Obsolete, Unrelia	MFD	Atkinson	100	3	1	1	3	2	6	М	0.020	0.050	1.0	0.0100	0.27	1.20	-39%	-0.5	8%	0.1	2017	1.0
44 MR09	9 LCLS		Linac S21-30	Vacuum System S21-30	RGA	Insuff Vac Infor	MFD	Atkinson	10	3	1	1	3	2	6	М	0.035	0.050	1.0	0.0100	0.27	0.43	69%	0.3	200%	0.9	2016	1.0
45 MR06	9 LCLS		Linac S21-30	Vacuum system S21-30	Sector Fast Valve	Obsolete, Unrelia	MFD	Atkinson	10	3	3	1	3	2	6	M	0.010	0.030	0.6	0.0040	0.11	1.38	-64%	-0.9	7%	0.1	2016	1.0
46 MR06	3 LCLS		Linac S21-30	Vacuum system S21-30	Sector Ion Pumps-Ultec 500L	Old style, aging	MFD	Atkinson	40	3	3	1	3	2	6	М	0.020	0.050	1.0	0.0050	0.14	1.21	-29%	-0.3	22%	0.3	2017	1.0
47 MR01	4 LCLS		Linac S21-30	Linac Klystron S21-30	LCLS PFN Cap Replace	End of life	RFARED	Rafael	84	1	3	2	3	3	9	н	0.200	0.500	10.0	0.1000	2.73	5.44	34%	1.8	-49%	-2.6	2016	1.0
48 MR11	7 LCLS		Linac S21-30	Power Supply	Klystron Solenoid Pwr Sply	Upgrade	RFARED	Rafael	64	2	1	3	3	4	12	н	0.100	0.200	4.0	0.0500	1.36	4.93	-47%	-2.3	569%	28.1	2013	1.0
49 MR12	2 LCLS		Linac S21-30	Power Supply S21-30	Magnet cables (e.g. S30)	Upgrade	RFARED	Rafael	9	3	1	1	3	2	6	M	0.010	0.020	0.4	0.0010	0.03	1.79	-79%	-1.4	-28%	-0.5	2013	1.0
50 MR08	5 LCLS		Linac S21-30	RF	Modulator S21-22	Obsolescent	RFARED	Rafael	16	3	2	1	3	3	9	н	0.300	0.600	12.0	0.1000	2.73	2.18	325%	7.1	510%	11.1	2016	1.0
51 MR08	6 LCLS		Linac S21-30	RF	Modulator S23-24	Obsolescent	RFARED	Rafael	16	3	2	1	3	3	9	н	0.300	0.600	12.0	0.1000	2.73	2.18	325%	7.1	510%	11.1	2015	1.0
52 MR08	7 LCLS		Linac S21-30	RF	Modulator S25-26	Obsolescent	RFARED	Rafael	16	3	2	1	3	3	9	Н	0.300	0.600	12.0	0.1000	2.73	2.18	325%	7.1	510%	11.1	2014	1.0
53 MR15	1 LCLS		Linac S21-30	RF System S21-30	Mod 6575: Cabinet 2&3 AIP	EEIP non-compliar	RFARED	Rafael	80	1	2	1	2	2	4	L	0.100	0.300	6.0	0.0100	0.27	4.85	18%	0.9	-97%	-4.7	2016	1.0
54 MR15	4 LCLS		Linac S21-30	RF System S21-30	Mod 6575: pulse/bulk cables	Upgrade	RFARED	Rafael	33	1	1	1	1	1	1	L	0.050	0.100	2.0	0.0100	0.27	0.24	610%	1.5	-96%	-0.2	2013	1.0
55 MR14	8 LCLS		Linac S21-30	RF System S21-30	Mod 6575: T-20s	Replace	RFARED	Rafael	15	2	2	2	2	2	4	М	0.100	0.150	3.0	0.1000	2.73	0.24	13%	0.0	53%	0.1	2013	1.0
56 MR15	6 LCLS		Linac S21-30	MCOR Power Supplies	Bipolar Power Supplies	Upgrade	RFARED	Rafael	800	2	1	1	2	3	6	М	0.100	0.200	4.0	0.0500	1.36	2.03	30%	0.6	63%	1.3	2013	1.0
09 MR14	4 SPEAF	AR3	All	Safety Systems	PPS, BCS, BSOICs	Obsolescent	SPEAR3	Schmerge	3	3	2	2	3	2	6	M	0.040	0.060	1.2	0.0100	0.27	2.63	-65%	-1.7	-49%	-1.3	2015	1.3
10 MR10	5 SPEAR	AR3	SP Booster	Vacuum Booster, Linac	Vacuum chambers	Lack of spares	MFD	Schmerge	30	5	4	1	5	2	10	н	0.025	0.100	2.0	0.0100	0.27	1.43	21%	0.3	1089%	15.6	2014	1.0
11 MR01	0 SPEAF	AR3	SP Booster	Power Supplies	Bias White Circuit	Serviceability	RFARED	Rafael	1	4	2	1	4	2	8	M	0.010	0.050	1.0	0.0100	0.27	0.64	14%	0.1	533%	3.4	2015	1.0
12 MR00	9 SPEAF	AR3	SP Booster	Power Supplies	BTS-B2B6 Power Supply	Serviceability	RFARED	Rafael	1	4	2	1	4	2	8	М	0.010	0.030	0.6	0.0100	0.27	0.44	-26%	-0.1	820%	3.6	2016	1.0
13 MR01	1 SPEAF	AR3	SP Booster	Power Supplies	Pulser White Circuit	Serviceability	RFARED	Rafael	1	4	2	1	4	2	8	М	0.010	0.030	0.6	0.0100	0.27	0.42	-22%	-0.1	864%	3.6	2015	1.0
14 MR10	4 SPEAF	AR3	SP Booster	Power Supply, Booster,	, Bipolar DC PS	Obsolete	RFARED	Rafael	90	2	1	1	2	3	6	L	0.010	0.020	0.4	0.0050	0.14	1.19	-78%	-0.9	177%	2.1	2014	1.0
15 MR10	2 SPEAF	AR3	SP Booster	RF System	Klystron	End of life	RFARED	Schmerge	1	3	3	1	3	2	6	М	0.100	0.300	6.0	0.0500	1.36	3.92	18%	0.7	-62%	-2.4	2014	2.0
16 MR14	2 SPEAF	IR3	SP Booster	Electrical Controls	Controls Linac, Booster	Obsolescent	SPEAR3	Schmerge	1	2	1	1	2	2	4	L	0.050	0.100	2.0	0.0250	0.68	2.53	-48%	-1.2	-87%	-2.2	2015	1.0
17 MR10	6 SPEAF	AR3	SP Linac	Pulsed PS	Chopper	Obsolete	RFARED	Schmerge	1	3	1	2	3	2	6	М	0.020	0.020	0.4	0.0100	0.27	0.98	-87%	-0.9	32%	0.3	2015	2.0
18 MR10	3 SPEAF	AR3	SP Linac	RF System	Klystron/modulator	Obsolete	RFARED	Schmerge	3	3	2	1	3	2	6	М	0.050	0.100	2.0	0.0250	0.68	1.35	-2%	0.0	-1%	0.0	2016	1.3

MR Return On Investment – Maintenance

SLAC

"ROI-M" = (MSC-RC)/RC with RC = replacement cost. MSC=Maintenance Savings Costs integrated over 20 years.

MR Return On Investment – Down Time (Program Risk) "We do not get called at 2:00 am to discuss future costs"

Use the (probability)(severity) product matrix in evaluating risk impact

- LOW: Minimal Impact with normal oversight needed to ensure risk remains low.
- MODERATE: Some impact. Some special action may be required. Additional management attention may be needed.

 HIGH: Significant impact on safety, cost, schedule, or performance. Significant action required. High priority management attention needed

¥	Very Likely
lity of Risk Iizing	Likely
Probability Materializi	Unlikely
Pro	Very Unlikely

ч	ight phonty management attention needed											
	Low	Moderate	High	High	High							
	Low	ow Moderate		High	High							
	Low	Low	Moderate	Moderate	High							
	Low	Low	Low	Low	High							
	Negligible	Marginal	Significant	Major	Critical							

Severity of Consequence

MR Return On Investment – Down Time (Program Risk) SLAC

2 risk elements: program schedule (MTTR) and repair costs Estimate LCLS "cost" for down time, \$8k/hr Down time cost (DT) for an "unlikely" event

- MTTR (significant): (20 years)(1/year)(8 hr)(\$8k/hr) = \$1.28M
- Repair (marginal): (20 years)(1/year)(\$50k) = \$1M
- Total (DT): \$2.3M

"ROI-D" = (DT-RC)/RC

- Probability
 - Very unlikely 0.1/year
 - Unlikely 1/year
 - Likely 10/year
 - Very Likely 100/year

- Severity MTTR Repair \$
 - Negligible 0.5 hr \$10k
 - Marginal 2 hr \$50k
 - Significant 8 hr \$0.2M
 - Major 25 hr \$1M
 - Critical 100 hr \$2M

"Where is the return on my investment in your system?"
ROI on MR is now a significant KPI

Developing processes and implementing tools to track the relevant data for ROI-M

- Track upgrade project cost to estimate investment (in place)
- Segregate and track the impacted operations costs (TBD)
 - Reactive maintenance (repairs)
 - Preventative maintenance (maintenance)
 - Engineering planning
 - Improvements
 - Replacement

Work Flow Control for Effective Stewardship

SLAC

Guiding principal: all stewardship activity is engineering-based

- System state and mission requirements are time variant, need engineer engaged in daily O&M
- If you wait until you see the RHS of the bathtub curve, you are "In the hands of God"

System Engineer – single steward for each system

- Addresses all operational demands, 24/7, authorizes all service
- Develops and manages O&M budget
- Provides training and documentation for Techs, qualifies Techs
- Manages system to meet present and future performance needs
- Accountable both to line management and customer

Need to improve gate keeper functions of System Engineer

- Assure all activities are engineering-based
- Further develop budget model; effort-basis, ROI analysis

Performance metrics are required for effective engineeringbased stewardship (fatalism is not good engineering practice) Well formulated performance metrics provide quantitative justification for stewardship efforts

- Controllable characteristic
- Data-based
- Reference value

Use "standardized" data for performance metrics
Cost data tends to be relative rather than absolute
Return On Investment approach normalizes cost data